Amino acid substitution in NPC1 that abolishes cholesterol binding reproduces phenotype of complete NPC1 deficiency in mice.

نویسندگان

  • Xuefen Xie
  • Michael S Brown
  • John M Shelton
  • James A Richardson
  • Joseph L Goldstein
  • Guosheng Liang
چکیده

Substitution mutations in adjacent amino acids of the N-terminal domain of NPC1, a lysosomal membrane protein, abolish its cholesterol binding activity and impair its ability to export cholesterol from lysosomes of cultured cells lacking npc1 [Kwon HJ, et al. (2009) Cell 137:1213-1224]. Here, we show that the same two mutations (proline-202 and phenylalanine-203, both changed to alanine) reproduce the phenotype of complete NPC1 deficiency when knocked into the mouse npc1 gene by homologous recombination. Homozygous npc1(pf/pf) mice exhibited neurodegeneration beginning at day 49 and died at a median age of 84 d, as previously reported for mice that lack npc1. Liver and other organs of the npc1(pf/pf) mice accumulated excess cholesterol in lysosomes. In liver, mRNAs encoding several lysosomal proteins were elevated, including NPC1 and NPC2 and several digestive enzymes (acid lipase, β-glucuronidase, and cathepsins B and D). Weekly treatment with hydroxypropyl-β-cyclodextrin (HPCD) beginning at 7 wk reduced hepatic cholesterol accumulation and diminished the lysosomal mRNAs. We conclude that the cholesterol binding site in the N-terminal domain of NPC1 is essential for cholesterol export from lysosomes in living animals as it is in cultured cells. The HPCD-mediated reduction of excess lysosomal enzymes may contribute to the ability of this drug to delay the progression of NPC disease in mice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Purified NPC1 protein: II. Localization of sterol binding to a 240-amino acid soluble luminal loop.

Defects in Niemann-Pick, Type C-1 protein (NPC1) cause cholesterol, sphingolipids, phospholipids, and glycolipids to accumulate in lysosomes of liver, spleen, and brain. In cultured fibroblasts, NPC1 deficiency causes lysosomal retention of lipoprotein-derived cholesterol after uptake by receptor-mediated endocytosis. NPC1 contains 1278 amino acids that form 13 membrane-spanning helices and thr...

متن کامل

Lipid homeostasis and lipoprotein secretion in Niemann-Pick C1-deficient hepatocytes.

Niemann-Pick C (NPC) disease is a fatal inherited disorder characterized by an accumulation of cholesterol and other lipids in late endosomes/lysosomes. Although this disease is considered to be primarily a neurodegenerative disorder, many NPC patients suffer from liver disease. We have investigated alterations that occur in hepatic lipid homeostasis using primary hepatocytes isolated from NPC1...

متن کامل

Cholesterol depletion facilitates ubiquitylation of NPC1 and its association with SKD1/Vps4.

Niemann-Pick disease type C (NPC) is an inherited lipid storage disorder caused by mutations in NPC1 or NPC2. NPC1 is a polytopic glycoprotein that contains a sterol-sensing domain, whereas NPC2 is a soluble protein that contains an MD-2-like lipid-recognition domain. In the current study, we addressed the hypothesis that ubiquitylation of NPC1 might be regulated by cholesterol. We found that d...

متن کامل

Purified NPC1 protein. I. Binding of cholesterol and oxysterols to a 1278-amino acid membrane protein.

The Niemann-Pick, Type C1 protein (NPC1) is required for the transport of lipoprotein-derived cholesterol from lysosomes to endoplasmic reticulum. The 1278-amino acid, polytopic membrane protein has not been purified, and its mechanism of action is unknown. Unexpectedly, we encountered NPC1 in a search for a membrane protein that binds 25-hydroxycholesterol (25-HC) and other oxysterols. A 25-HC...

متن کامل

Defective endocytic trafficking of NPC1 and NPC2 underlying infantile Niemann-Pick type C disease.

Niemann-Pick type C (NPC) disease is a fatal recessively inherited lysosomal cholesterol-sphingolipidosis. Mutations in the NPC1 gene cause approximately 95% of the cases, the rest being caused by NPC2 mutations. Here the molecular basis of a severe infantile form of the disease was dissected. The level of NPC1 protein in the patient fibroblasts was similar to that in control cells. However, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 37  شماره 

صفحات  -

تاریخ انتشار 2011